
IVP 6.0
User Manual
written by Cad Delworth CEng MBCS CITP

Introduction
Thanks for downloading IVP, the ‘Intelligent’ Voicetrack Processor
script for version 4.x of the unparalleled mAirList radio playout software
written and maintained by Torben Weibert in Germany.

Please note that IVP 6.0 will only work with version 4.x of
mAirList; for earlier versions of mAirList, use IVP 5.11 instead.

I wrote IVP to automate the task of adding ‘talkovers’ (and now ‘talkouts’ or
‘talkunders’ as well) to voicetracked Playlists. IVP is a mAirList script
which I provide as freeware under the terms of the GNU Public Licence.

If you have any problems with IVP, find any bugs, or have suggestions for
further improvements or features, please post your thoughts in the
mAirList user forum, where I am an active member (username: cad).

Installation
UnZIP the mls files into your mAirList Scripts folder (usually, this is
c:\Program Files\mAirList\scripts). Er … that’s it!

The main IVP script is IVP-6.0.mls.
The ‘Playlist markup’ scripts are IVP-6.0-MarkEndingsByType.mls
and IVP-6.0-MarkEndings.mls.

To uninstall IVP, delete the scripts from your PC.

NOTE: You will find a fully-commented version of each IVP script in the
IVP ZIPfile, in case you wish to study or amend the code.

TIP: If you find IVP useful, use the mAirList configuration program to add
IVP scripts to the Action menu on mAirList computers in production offices
and areas (wherever your producers and presenters ‘prep’ their Playlists!).

What Does IVP Do?
IVP processes the current Playlist and looks for items with special Ending
codes. IVP uses these as ‘commands’ to modify the current Playlist to
achieve ‘talkover/talkunder’ by changing cue points in the items and adding
Volume Envelopes to ‘duck’ or ‘fade’ music tracks ‘under’ your voicetracks.
You then save the amended Playlist for automated playout or mixdown.

Or if you prefer: sequence your music and voicetracks into a Playlist, ‘mark’
the items using Ending codes, then run IVP to do the chore of setting
deadly accurate cue points to create ‘killer’ perfect talkovers, talkunders,
and even music beds under voicetracks with no ‘crashes’—guaranteed!

The IVP-MarkEndingsByType and IVP-MarkEndings scripts
automate the process of adding Ending codes to the items in a Playlist.

NOTE: IVP does not change the audio files and does not change the
MMD files associated with the audio files. The only changes IVP makes are
to data within the Playlist: exactly the same process as manually changing
cue points and envelopes for a Playlist item using the Mix Editor dialog.

What Do I Need To Do First?
• I strongly recommend that you use a Playlist with at least three

Players for automated playout of a voicetracked Playlist.
With only two Players, items can sometimes ‘wait’ for a free Player.

• IVP totally relies on a correctly tagged music library. If all your music
has at least a Ramp and a FadeOut point set, you can use IVP to create
talkovers (‘overlays’). Run-on-unders (‘underlays’) work best if your
music has an Outro point set. Of course, not every music track has a
sensible Ramp or Outro point, so IVP does its best to make ‘intelligent’
decisions if any ‘expected’ cue points are not set.

• IVP also assumes that voicetracks are correctly ‘topped and tailed (!),’ or
at the very least have CueIn and/or CueOut points set to eliminate any
silence at the start or end.

• IVP also checks the durations of items you mark up. ‘Songs’ must be
90 seconds or more in duration; voicetracks must be 90 seconds or less
in duration. (You can change these two settings, or remove the tests
completely if you wish, by editing the IVP script.)

‘Overlay’ And ‘Underlay’
In IVP, the terms ‘overlay’ and ‘underlay’ have these specific meanings:

• OVERLAY means:
‘this item (usually a voicetrack) ends by “talking over” the next item
(usually a song), up to the next item’s Ramp point.’ To ‘tighten’ or
‘loosen’ this, change the global ramp offset setting in the IVP script.

• UNDERLAY means:
‘this item (usually a song) ends by “running on under” the next item
(usually a voicetrack), starting from this item’s Outro point.’ In other
words, the following voicetrack starts at this item’s Outro point.

Hence, in most cases:

• you use overlay codes on voicetracks,

• and you use underlay codes on songs.

Overlay ending codes begin with the letter o.
Underlay ending codes begin with the letter u.

The simplest way you could mark up a voicetracked Playlist would be this:

Item Type Ending

VOICETRACK o

Song u

VOICETRACK o

Song u

VOICETRACK o

IVP provides a few extra Ending codes to allow you more control over
segues. For example, you can talk up to a specific Ramp (1, 2, or 3) instead
of up to the first Ramp; or start the next song in sync with the start of the
voicetrack; or apply a long fadeout to a song as the voicetrack begins.

The full list of IVP Ending codes begins on the next page.

IVP Ending Code Reference
IVP uses the Ending codes below as its ‘commands.’
You can type Ending codes in UPPERCASE or lowercase.

To add an Ending code to an item in the Playlist, either:

• type the code in the End Type box in the Playlist Edit Bar, or

• right-click a Playlist item, click Properties,
and type the code in the Ending text box on the General tab.

The Playlist Edit Bar is easier to use, because you don’t need to close and
re-open a dialog for each item you want to edit.

OVERLAY Ending Codes

Ending code On a … What it does:

o voicetrack
(overlay)
Sets StartNext in the voicetrack so that it
ends at the first Ramp of the next item.

o1 voicetrack Same as o, but voicetrack ends at Ramp1.

o2 voicetrack Same as o, but voicetrack ends at Ramp2.

o3 voicetrack Same as o, but voicetrack ends at Ramp3.

os voicetrack

(overlay sync)
Sets StartNext in the voicetrack so the
next item starts in sync with* the start
of the voicetrack.

ob voicetrack

(overlay bed)
Same as os, but also fast fades the next
item (usually a music bed) at the end of
the voicetrack, so that both end in sync.

* The voicetrack’s StartNext is set to 250 mS (by default).

Figure 1: Examples of OVERLAY Ending codes

UNDERLAY Ending Codes

Ending code On a … What it does:

u song

(underlay)
Sets the song’s StartNext to its Outro
point, so the next item starts at the song’s
Outro point.
The song’s FadeOut point is moved if it
would ‘crash’ the start of the item after
the following item.

ulf song

(underlay long fade)
Same as u, but executes a long fade from
the song’s Outro point to its (moved)
FadeOut point.

Figure 1: Examples of UNDERLAY Ending Codes

Volume Envelopes
IVP ‘ducks’ the level of music tracks to make their intros and outros play
out ‘under’ voicetracks. IVP does this using the volume envelope for
music tracks; adding points to drop and re-raise the track’s level.

The default ‘ducked’ level is 11 dB (on each channel) below peak level, but
you can easily change this setting in the script.
The same ‘ducked’ level is used for intros, outros, and ‘beds.’

To ‘tighten’ or ‘loosen’ the ‘ducking’ of intros/outros, change the
duck intro/outro offset settings in the IVP script. (Think of this as globally
‘moving’ all duck in/out points backwards/forwards by these amounts.)

Note that by default, IVP clears the envelope before adding the ‘duck’
envelope points. You can change this if you wish, but I strongly
recommend that you don’t. Existing envelope points almost always
‘interfere’ with the points added by IVP, producing unexpected results.

Processing A Playlist With IVP

Step One: Prepare Your Playlist
1. Sequence your Playlist of voicetracks, songs, etc. as normal and

save it.

2. Set the Ending codes on the items you want to overlay and underlay.
Do this manually, or run the IVP-6.0-MarkEndingsByType or
IVP-6.0-MarkEndings script. Save the Playlist again.

Some tips on setting Ending codes to achieve specific effects:

• Voicetrack over music bed:
Mark the voicetrack with an ob code.
Don’t mark the bed!

• Sweeper or jingle playing over start of song:
Mark the sweeper/jingle with an os code.
Don’t mark the item before the sweeper/jingle.

Step Two: Run The IVP Script
1. Run the IVP-6.0 script.

2. Check the mAirList system log for any messages. In most cases,
there will be no failures or warnings, meaning: everything worked.

If there were any problems, the IVP warning or failure messages in
the mAirList system log describe the problems.

3. Right-click the Playlist, then click This Playlist…, PFL to audition
the segues IVP created. Alternatively, use the Mix Editor.

4. If you are happy with the results, save the Playlist again.
TIP: Save the Playlist with a different name.

If anything didn’t work as planned, re-load the Playlist you saved after
Step One, make changes as needed, then save the Playlist again. You can
now re-run the IVP script.
TIP: Save the changed Playlist with a different name.

Step Three: Test The Results
It’s always a good idea to test a Playlist’s segues after IVP has amended the
cue points.

If you need to change anything, re-load the ‘coded’ Playlist you should
have saved at the end of Step One above, change any or all of the Ending
codes as needed, save the amended Playlist, then run IVP-6.0 again.

For example, if you find that an overlay doesn’t work properly because the
song it overlays has a very long Ramp, you might decide to change the code
from o to os to start the voicetrack and song in sync instead. You may also
need to clear the Ending code of the song before the voicetrack.

You may also need to change some Ending codes to allow for Break
commands, ad. breaks, etc.

You can run IVP as many times as necessary to get the results you want,
but if you need to re-run IVP against the same Playlist, you must re-load
the Playlist—with the Ending codes added, but before IVP has altered
anything—before each re-run of IVP.

Why Re-Load The Playlist Each Time?
IVP uses the existing cue point values in Playlist items to work out which
cue point values need to be ‘moved.’

After you run IVP, a number of cue points in your Playlist will have been
‘moved’ and quite probably some cue points will have been deleted as well.

This means that if you simply run IVP again, IVP will base its calculations
on the amended cue points, and will invariably ‘get things wrong.’

For this reason, if you need to change anything (such as changing an
Ending code), you must re-load the original marked-up Playlist, make
your changes, and save the changed Playlist before you run IVP again.

Advanced IVP

Amending IVP
You can change the default IVP setup by changing the constant values at
the start of the script. For example, you can change the Ending codes, or
whether you want by default to ‘talk over’ up to the first or last Ramp.

In particular, you may want to change the default maximum duration of
voicetracks (90 seconds).

Everything you need to know is in the comments within IVP. The only
point to re-emphasise here is that all overlay codes must begin with the
same first letter, because IVP relies on that to identify overlay codes.

TIP: Open the fully commented version of each script in your text editor to
fully understand how each IVP script works.

IVP-6.0-MarkEndingsByType Script
The IVP-6.0-MarkEndingsByType script automates the process of
setting Ending codes on the items in a Playlist. For most users, this script is
a better choice than the IVP-6.0-MarkEndings script (see next page).

The script requires that every item in your Playlist has a Type, which is set
when your files are imported into mAirList, or manually at a later time.
If your items/files do not all have a Type, use the IVP-6.0-MarkEndings
script (see next page) instead.

By default, the following Types are recognised:

• A Music or Instrumental item is marked as a song
(Ending is set to u).

• A Voicetrack item is marked as a voicetrack
(Ending is set to o) unless it is the final item in the Playlist.

• A Sweeper item is marked as a ‘start in sync’
(Ending is set to os) unless it is the final item in the Playlist.

You can easily change the Types recognised, the Ending code set for each
Type, etc. by changing the script.

Mark As ‘Special Item:’ A Note To Existing IVP Users

The Special Items option in mAirList 3.x does not exist in mAirList 4.x,
hence this function has been removed from the IVP 6.0 scripts.

IVP-6.0-MarkEndings Script
The IVP-6.0-MarkEndings script automates the process of setting
Ending codes on the items in a Playlist. (Note that if all your items have
Types set, the IVP-6.0-MarkEndingsByType script on the previous
page is a better choice than the IVP-6.0-MarkEndings script.)

NOTE: You will need to amend the script to match the voicetrack file
naming standards used at your station, or to change any of the defaults.
You should find this very easy to do, even if you are not a programmer.

The script identifies items as songs or voicetracks using the following
simple rules:

1. If the item’s effective duration is at least 90 seconds
(you can amend this value), it is marked as a song (Ending is set to u).

2. Otherwise, the item’s Title and Artist are checked. If the item’s Title or
Artist match any of the checks the script performs (see below), the item
is marked as a voicetrack (Ending is set to o).

Is It A Voicetrack?

Many stations use a standard Title or Artist—or some standard letters at the
start or end of Title or Artist—to identify an audio file as a voicetrack.

IVP-6.0-MarkEndings can search for strings which match:

• the entire Title and/or Artist, and/or

• the start (prefix) of the Title and/or Artist, and/or

• the end (suffix) of the Title and/or Artist.

For example, you could test for a Title starting INTRO-, or an Artist of VT,
or a Title ending VoiceTrack, all at the same time.

If any strings match, the item is identified as a voicetrack and marked.

To enable these tests, change the appropriate consts within the script to a
lowercase value. NOTE: You must type the strings in lowercase!

Mark As ‘Special Item:’ A Note To Existing IVP Users

The Special Items option in mAirList 3.x does not exist in mAirList 4.x,
hence this function has been removed from the IVP 6.0 scripts.

